Voltage and current are the cornerstone concepts in electricity. We will create our first mental models for these basic electrical quantities. We will also talk about power, which is what happens when voltage and current act together.
The concept of electricity arises from an observation of nature. We observe a force between objects, that, like gravity, acts at a distance. The source of this force has been given the name charge. A very noticeable thing about electric force is that it is large, far greater than the force of gravity. Unlike gravity, however, there are two types of electric charge. Opposite types of charge attract, and like types of charge repel. Gravity has only one type: it only attracts, never repels.
Conductors are made of atoms whose outer, or valence, electrons have relatively weak bonds to their nuclei, as shown in this fanciful image of a copper atom. When a bunch of metal atoms are together, they gladly share their outer electrons with each other, creating a "swarm" of electrons not associated with a particular nucleus. A very small electric force can make the electron swarm move. Copper, gold, silver, and aluminum are good conductors. So is saltwater.
There are also poor conductors. Tungsten—a metal used for light bulb filaments—and carbon—in diamond form—are relatively poor conductors because their electrons are less prone to move.
Insulators are materials whose outer electrons are tightly bound to their nuclei. Modest electric forces are not able to pull these electrons free. When an electric force is applied, the electron clouds around the atom stretch and deform in response to the force, but the electrons do not depart. Glass, plastic, stone, and air are insulators. Even for insulators, though, electric force can always be turned up high enough to rip electrons away—this is called breakdown. That's what is happening to air molecules when you see a spark.
Semiconductor materials fall between insulators and conductors. They usually act like insulators, but we can make them act like conductors under certain circumstances. The most well-known semiconductor material is Silicon (atomic number 141414). Our ability to finely control the insulating and conducting properties of silicon allows us to create modern marvels like computers and mobile phones. The atomic-level details of how semiconductor devices work are governed by the theories of quantum mechanics.
The online monitoring equipment installed on the high-voltage power bus is supported by reliable and stable DC power, which cannot be obtained from industrial low-voltage AC power or chemical battery. This paper presents a circuit based on the principle of electromagnetic induction to obtain low-voltage low-power [url=
http://www.hvsemi.com/high-voltage-power-supply/dc-power-supply/]DC power supply[/url] from [url=
http://www.hvsemi.com/high-voltage-power-supply/]high voltage power supply[/url] bus. The circuit consists of energy-acquired coil, the rectifier and regulator circuit, and the shunt coils. This power supply can work with small current in the bus, also it can output stable DC voltage in the case of large current in the bus by starting shunt coil. The experimental data indicates that the output voltage of the power supply are 3.3 V and 5 V, the output power is greater than 120 mW and the bus starting current is less than 5A, all these can suffice for the online monitoring equipment.